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Abstract Over the last decade, toxic events along the
Mediterranean coast associated with exceptional harmful
blooms of the dinoflagellate Ostreopsis cf. ovata have in-
creased in frequency and distribution, causing not only the
death of marine organisms and human health problems, but
also economic loss on the tourism and aquaculture industries.
In order to reduce the burden of routine algal counting, an
innovative automated, low-cost, opto-electronic system called
OvMeter was developed. It is able to speed up the monitoring
process and therefore it enables early warning of incipient
harmful algal blooms. An ad-hoc software tool provides auto-
mated cell recognition, counting and real-time calculation of
the final algal concentration. The core of dinoflagellate recog-
nition relies on a localization step which takes advantage of
the synergistic exploitation of 2D bright-field and quantitative
phase microscopy images, and a classification phase per-
formed by a machine learning algorithm based on Boosted
Trees approach. The architectural design of the OvMeter de-
vice is presented here, together with a performance evaluation
on sea samples.

Keywords OstreopsisCf. ovata . Dinoflagellate, automated
environmental monitoring . Image processing . Pattern
recognition

Introduction

Over the last decade, episodes of exceptional harmful algal
blooms (HABs) of dinoflagellateOstreopsis cf. ovata have been
reported repeatedly around the basin of the Mediterranean sea.
Ostreopsis ovata is a potentially toxic benthic microalga that,
when reaching high concentrations (≥ 104 cells L−1, (Tichadou
et al. 2010)) during its bloom, may cause dangerous side effects
to human health, therefore being deleterious for commercial ac-
tivities, tourism, fishing and aquaculture.Ostreopsis ovata grows
in shallow and sheltered waters, characterized by low hydrody-
namic movements and usually on rocky bottoms as benthic sub-
strate, with the formation of filaments and mucilaginous sub-
stances (Totti et al. 2010; Honsell et al. 2011). In the presence
of strongwavemotion, themicroalgae can be resuspended in the
water column, giving rise to flocculates and sometimes to surface
foam, which can be transported in marine aerosols. Traces of
palytoxin, among the most powerful non-peptidic marine toxins
known to date (Hilgemann 2003; Ciminiello et al. 2006), and
ovatoxins are responsible for the toxicity of O. ovata, causing
mass mortality of benthic organisms (sea urchins, limpets and
barnacles) (Faimali et al. 2012; Giussani et al. 2015). Human
intoxication is characterized by irritation of the upper airways,
coughing, rhinorrhea, shortness of breath, muscle and joint pain,
fever and irritation of themucousmembranes of the eye and skin
(Ciminiello et al. 2008, 2012). To date, national and regional
monitoring programs of O. ovata have being carried out,
implementing a counting procedure based on a microscopic in-
spection of water samples and the manual recognition by taxon-
omy expert operators. The complexity of this estimation proce-
dure causes long delays between data collection, analysis and
information reporting, thus limiting the effectiveness of themon-
itoring programs.

In the last few years, many automated optical systems have
been developed to speed up the recognition task of marine
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organisms, such as plankton and microalgae. Verikas et al.
(2012), for example, worked on Prorocentrum minimum to
discriminate organisms in overcrowded images, which repre-
sent one of the worst scenarios, they combined phase congru-
ency detection of circular objects, stochastic optimization and
image segmentation, achieving 93.25% of sensitivity. The
most commonly exploited approaches for rapid identification
and counting of microorganisms are imaging systems based
onmachine learning (Rodenacker et al. 2006; Tao et al. 2010),
which are often able to achieve accuracy similar to manual
identification performed by trained personnel. In particular,
Support Vector Machines (SVMs) (Sosik and Olson 2007)
and Artificial Neural Networks (Culverhouse et al. 2003;
Embleton et al. 2003; Mosleh et al. 2012; Schulze et al.
2013; Coltelli et al. 2014) are among the most popular classi-
fication algorithms. Interestingly, most of the cited methods
rely on fluorescent and/or pictorial features. Rodenacker et al.
(2006) proposed an automated image acquisition system
which, based on a hierarchical tree classification and taking
advantage of the chlorophyll auto-fluorescence properties of
marine algae, was able to precisely discriminate between phy-
toplankton cells and non-algal structures. Schulze et al. (2013)
proposed an automated analysis system for the identification
of phytoplankton, exploiting bright field and fluorescence
images. The system relied on segmentation of the organisms
out of the background, calculation of a large range of features
and classification of imaged organisms into different groups
of plankton taxa through a neural network. Sosik and Olson
(2007) developed a high-resolution imaging system based on
flow cytometry that provided taxonomically resolved esti-
mates of phytoplankton abundance. Exploiting chlorophyll
fluorescence and running a SVM on a large set of examples,
the system rapidly outputs quantitative measurements of indi-
vidual organisms. An automatic, real-time, multi-algal recog-
nition tool mounted on a motorized image analysis system
was presented by Coltelli et al. (2014), based on pigment
signatures of microalgae. The system was designed to recog-
nize algal feature vectors, grouping them into classes by
means of an unsupervised neural network and was able to
screen, identify and enumerate 23 different microalgal spe-
cies, representing the major algal phyla, with the finest taxo-
nomic resolution, attaining 98.6% accuracy from a set of
53.869 images. In recent years, with the advances in digital
image sensors and the increase of computing power, innova-
tive approaches based on quantitative phase microscopy
(QPM) raised a growing attention. This class of instruments
provides additional quantitative information by recording the
phase shift produced by a specimen at each point within an
optical image, which can be employed to identify and classify
particles and microorganisms (Mir et al. 2012). In particular,
Javidi et al. (2005) demonstrated the potential of QPM-based
quasi-3D imaging for marine sample analysis. The authors
implemented a complex workflow on QPM images by

chaining object segmentation, shape features extraction (based
on Gabor wavelets) and localization through rigid graph
matching that was used to recognize two filamentous algae,
Sphacelaria and Tribonema aequale. Moreover El Mallahi
et al. (2013) applied a specialized QPM configuration to au-
tomatically detect and classify living organisms a fluidic set-
up without any staining. Morphological and textural features
were extracted from the phase map. A robust SVM classifier
was built to unambiguously detect and identify parasitic
protozoan Giardia lamblia cysts and algal cells such as
Chlorella autotrophica and Scenedesmus dimorphus which
are often present in drinking water resources. An
enhancement of taxonomic resolution in automated
phytoplankton classification provided by additional phase
information was also presented by Zetsche et al. (2014) who
worked on nano-planktonic organisms. In particular, three
single-celled nanoplankton species similar in shape,
(Cyanothece sp., Staniera sp. and Chlorella autotrophica)
were imaged through QPM and injected in a SVM classifica-
tion algorithm reaching a classification score of 92.4%.
Textural features based on phase information resulted efficient
in separating the three tested phytoplankton species.

Unfortunately, the previously mentioned methods are not
suitable for a quick quantification of O. ovata cell abundance.
In fact, O. ovata cells have a drop-like shape (very similar to
few other microalgae populating the same environment)
which helps in distinguishing O. ovata from most other ma-
rine microorganisms, but which is rarely compatible with the
already developed approaches, based on common geometrical
shapes. Moreover, existing methods cannot be adapted to the
monitoring guidelines, described by the Italian National
Institute for Environmental Protection and Research
(ISPRA) (ISPRA-ARPA 2012), which represents the refer-
ence for environmental monitoring in Italy, and described in
the European operational protocols (http://m3-habs.
net/guidelines/), because Lugol’s acidic solution (suggested
in the guidelines as a preservation method for maintaining
water samples) drastically reduces auto-fluorescence signal,
disabling the exploitation of all fluorescence-based classifica-
tion methods. Therefore, in order to reduce the burden of
routine identification and quantification of O. ovata HABs,
an innovative, automated, low-cost, opto-electronic system
exploiting QPM was developed. As a result of the tight inte-
gration of a motorized image acquisition system with on-line
cell recognition and counting software, based on a supervised
machine learning algorithm (a Boosted Tree, BT), the system
is able to quickly determineO. ovata concentration, ensuring a
fast activation of precautionary measures for preserving hu-
man health. The tool takes advantage of a synergistic combi-
nation of 2D bright field and QPM images, particularly effec-
tive for the analysis of critically high-density images, where
cells tend to overlap, or dirty samples (with massive presence
of debris and fragments) and inverting the approach. The
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architectural design of the OvMeter device is presented here,
and its performance are evaluated on field samples.

Materials and methods

TIE-quantitative phase microscopy

TIE-QPM is a non-interferometric phase imaging technique,
used to retrieve information about the phase shift of the light
radiation passing through a semi-transparent medium comput-
ed from a Z-stack acquisition of out-focus bright-field images
by solving the Transport of Intensity Equation (TIE).
Compared to other widely used phase retrieval techniques, like
phase-contrast microscopy (Barty et al. 1998) and interferom-
eter techniques, such as digital holographic microscopy (DH),
which entangle the phase and intensity images, TIE-QPM can
quantitatively map both. Moreover, since TIE-QPM can be
performed with any standard optical microscopy setup, as long
as it can move either the sample or the objective along the
Z-axis, it drastically reduces the cost of the optical setup.

The relation between phase and intensity images can be
modelled through the TIE (Teague 1983):

∇⋅ I r!; z
� �

∇φ r!; z
� �h i

¼ −k∂ZI r!; z
� �

ð1Þ

where

& r is the position vector (x, y) along the plane perpendicular
to the propagation axis (imaging plane),

& z is the position along the propagation axis,
& I(r, z) is the intensity of the light passing through the spec-

imen, in a given point in space,
& ∇ is the 2D gradient operator acting in the imaging plane,
& ∇⋅ is the divergence operator acting on the imaging plane,
& ϕ(r, z) is the incident light phase at a given point in space,
& k is the wave number (k = 2π/λ, where λ is the light

wavelength).

Assuming that a solution exists, this equation shows a re-
lation between the derivative of the intensity calculated along
the propagation axis and the phase value.Moreover, assuming
an absence of irradiance zeros I r!; z

� �
> 0, a uniform irradi-

ance and no phase singularities in the optical field, it can be
solved for the phase (Nugent et al. 2000):

ϕ r!; z
� �

¼ −F−1 q!
���

���
−2
F ∇⋅ I r!; z

� �−1
∇ψ r!; z

� �� �� �
ð2Þ

where

& ψ r!; z
� � ¼ F−1 q!�� ��−2F k∂ZI r!; z

� �	 

,

& q!¼ qx; qyð Þ and q!�� �� is the Euclidean norm of q!,

& qx and qy are the variable that conjugate to x and y in the
frequency domain,

& F and F−1 are the Fourier transform and its inverse acting
on the imaging plane.

This solution allows calculation of the incident light phase
values across the plane of focus by knowing just ∂zI(r, z) and
the intensity of the light. The phase image provides informa-
tion also about the thickness of the sample, since the phase
shift of a light beam passing through a semi-transparent object
is proportional to the thickness of the sample, assuming that
the object is optically uniform. Consequently, information can
be inferred about the 3D structure.

Unfortunately, O. ovata is not optically uniform; therefore,
it is not possible to retrieve the exact morphology of the sam-
ple. On the other hand, since the phase shift in the light pass-
ing through an object depends on its refractive index, which is
tied to the internal structure of the sample, it may be possible
to use this information to get a better localization and segmen-
tation of different species thanks to their optical features.

To obtain an efficient numerical implementation of (2), it is
possible (Gureyev and Nugent 1997) to write (2) as follows:

ϕ r!; z
� �

¼ ϕ Xð Þ r!; z
� �þ ϕ Yð Þ r!; z

� � ð3Þ

ϕ Xð Þ r!; z
� � ¼ −F−1qX q!

���
���
−2
F I r!; z

� �−1
F−1qX q!

���
���
−2
F k∂ZI r!; z

� �h i� �

ð4Þ
ϕ Yð Þ r!; z

� �
¼ −F−1qY q!

���
���
−2
F I r!; z

� �−1
F−1qY q!

���
���
−2
F k∂ZI r!; z

� �h i� �

ð5Þ

Then, since dividing by the spatial frequency results in a
numerical instability for qx and qy (that are calculated using the
image resolution and the conversion factor micrometer per
pixel, provided by the user) approaching zero, two regulariza-
tion filters were applied (Engl et al. 1996):

ΩX ¼
q!

���
���
2
qX

q!
���

���
4
þ αq2X

; ΩY ¼
q!

���
���
2
qY

q!
���

���
4
þ αq2Y

ð6Þ

where

α ¼ α
0
max q!

���
���
2


 �

α′ is a regularization parameter.
By substitutingΩx andΩy in Eqs. (4) and (5), a regularized

solution can be obtained:

ϕ Xð Þ r!; z
� �

¼ −F−1ΩX F I r!; z
� �−1

F−1ΩX F k∂ZI r!; z
� �h i� �

ð7Þ

ϕ Yð Þ r!; z
� �

¼ −F−1ΩY F I r!; z
� �−1

F−1ΩY F k∂ZI r!; z
� �h i� �

ð8Þ
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The intensity derivative ∂zI(r, z) is calculated by fitting the
values of every pixel with respect to the position along the Z-
axis with a polynomial expression and then deriving it
analytically.

Supervised machine learning

Supervised machine learning (Bishop 2007) is a branch of
machine learning that deals with inferring a function (referred
to as the learned function or trained model) from a labelled
training set. The training set consists of examples that are
made up of pairs of inputs and their expected outputs. A su-
pervised learning algorithm analyses training data and gener-
ates the learned function: once the inferring process has ended,
it is possible to use this function to make predictions on novel
data sets. It is of critical importance to choose a training set
that is representative of the general usage of the learned func-
tion, so that the predicted classification is generalized correct-
ly. The training set is usually converted into a feature vector
that encodes the intrinsic information that describes each ob-
ject to analyse.

The learning algorithm can be chosen from a wide range of
available types such as SVMs (Burges 1998; Nguyen and De
la Torre 2010; Orabona et al. 2010), neural networks
(Egmont-Petersen et al. 2002; Bishop 2007), and decision
trees (Breiman 2001; Sok et al. 2016). No single algorithm
is able to solve every possible machine learning problem
(Wolpert and Macready 1997), each one has strengths and
weaknesses that should be carefully taken into consideration
every time a new learning problem arises. For the develop-
ment of OvMeter, the classification task was implemented
through the machine learning algorithm known as BT
(Friedman 2001). This approach is similar to random forests
(Breiman 2001; Sok et al. 2016); the difference lies in the fact
that in a random forest, every tree (a small classifier) works in
parallel with the others, whereas in BT, they act in series, each
one trying to correct the classification errors of the previous
one.

The BT algorithm combines the performance of many
weak classifiers to produce a powerful ensemble. Aweak clas-
sifier is only required to be better than chance and thus can be
very simple and computationally inexpensive. However,
many of them smartly combine results to a strong classifier
that often outperforms most popular classifiers such as SVM
and Neural Networks.

Different variants of boosting are available: Discrete
Adaboost, Real AdaBoost, LogitBoost, and Gentle
AdaBoost. All of them are very similar in their overall struc-
ture. Therefore, in OvMeter, the attention was focused only on
the standard two-class Discrete AdaBoost algorithm, briefly
outlined below. Initially, the sameweight was assigned to each
training sample. Then, a weak classifier (a single tree) was

trained on the weighted training data and its weighted training
error was computed. Based on the total error, the classifier got
a score defining that its weight was the final ensemble. Then
the sample weights were increased for training samples that
have been misclassified and all weights were normalized. The
process of finding the next weak classifier continued for a
fixed number of times. The final classifier was the sign of
the weighted sum over the individual weak classifiers.

There are two main strengths with exploiting boosted tree
technique: (1) it performs well on heterogeneous feature vec-
tors with no a priori normalization information, (2) it very
seldom suffers from overfitting.

Algal collection and specimen preparation

Marine water samples containingO. ovatawere collected dur-
ing the Summer 2015 following O. ovata bloom events. Ten
fixed stations in protected harbours or bays were chosen along
coasts of Spain, Italy and France: Pins Mar (41° 32″ 60″N, 2°
29″ 24″ E) and Blau Mar—Barcelona (41° 32″ 20″ N, 2° 26″
58″ E) (Spain); Chiavari (44° 19″ 10″ N, 9° 19″ 2″ E),
Fiascherino, (44° 3″ 53″ N, 9° 55″ 16″ E) and Genova
Quarto (44° 23″ 22″ N, 8° 59″ 30″ E) (Italy); Rochambeau
Villefrance (43° 41″ 40″ N, 7° 18″ 17″ E) and Haliotis—Nice
(43° 41″ 21″N, 7° 14″ 27″ E) (France). Samples were collect-
ed and treated following the guidelines suggested by ISPRA
(ISPRA-ARPA 2012). The macro-alga Halopteris scoparia
was collected at a depth of 30 cm above pebbles closer to
the coast by diving, carefully cutting and placing it in plastic
bottles under water. After shaking the macro-algae in the
storage bottle vigorously to dislodged epiphytic dinoflagel-
lates, the thalli was also rinsed in filtered sea water. The re-
covered seawater was filtered again through 200 mm mesh
sieves to remove large particles. An aliquot of 1 mL was
injected in a Sedgewick-Rafter counting chamber, covered
by a coverglass and immediately observed. Column seawater
samples were also taken and sampled in shallow waters at
30 cm depth by using plastic jars (250 mL). Column water
samples were poured into sedimentation chambers according
to the Utermöhl method (Utermöhl 1958) and left to settle for
24 h before observation. A sedimentation column volume of
50 mL was used. All samples, both from macro-algae and
column water, were immediately preserved by using a 1%
(v/v) Lugol’s acidic solution. The exploitation of two different
counting chambers (Utermöhl and Sedgewick) to observe
cells of O. ovata does not influence the analysis methodology
proposed in this work.

OvMeter acquisition system

OvMeter relies on an opto-electronic platform that inte-
grates standard modular components (Optem FUSION,
Qioptiq Photonics GmbH & Co KG) and is equipped with
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an Optem 10× high-resolution, long working distance
(NA 0.30; WD 34 mm), infinity-corrected objective,
mounted on a motorized Z-axis with a 0.01 μm resolution
step. The sample is scanned through a motorized X-Y
stage with a 0.5 μm resolution step. A modular, compact
and freely programmable stepper motor controller
(phyMOTION™, Phytron, Germany) drives three motor-
ized axes. A LED lamp is integrated for illumination and
a Gig-E DMK 23G274 camera (The Imaging Source,
Bremen, Germany) equipped with a CCD (b/w,
1600 × 1200 pixel) is used. In this configuration, the field
of view corresponds to 0.5286 × 0.7048 mm2, with a
spatial resolution of 1 μm. A sample holder was specifi-
cal ly designed to house both the Utermöhl and
Sedgewick-Rafter counting chambers with a standard K-
frame.

The OvMeter control software was developed in a
LabVIEW (National Instruments, USA) environment and
automates all microscope functions such as movement of
the three axes, acquisition of the 2D bright-field image
and acquisition of a Z-stack of images. A scanning pro-
cedure is implemented in order to acquire images follow-
ing a defined pathway chosen by the user. A raster move-
ment is performed with a tuneable step in the X-Y direc-
tions. The number of images acquired in the Z-stack and
the Z-step size can be both defined by the user. A
LabVIEW module was developed for executing the TIE-
QPM algorithm, which produces quantitative phase (QP)
images. An automated machine learning approach for
classification and identification of O. ovata cells was im-
plemented in C++ language, operating in Windows envi-
ronment and wrapped in a dynamic-link library (DLL),
housed in the management software. All metadata, includ-
ing temperature, salinity and pH of sea water, together
with sampling date, cell extraction method and total cell
counts are summarized and saved in a text file. A simpli-
fied scheme of the OvMeter tool is shown in Fig.1.

Performance measurements

In order to evaluate the trained model’s ability to generalize,
an independent test dataset was used. The output of the
learned function on this novel set is arranged in a contingency
table, where each column represents instances of the predicted
class and each row instances of the actual class. In contingen-
cy table, if predicted and actual values are both true, true
positive results (TP) are noted, while if both of them are false,
true negative results (TN) are noted. Vice versa, false positive
results (FP) indicate that a given condition has been fulfilled,
when it actually has not been fulfilled, and false negative
results (FN) indicate that a condition failed, while it actually
was successful.

Based on the contingency table entries, different perfor-
mance indexes can be derived, each of them considering spe-
cific aspects of the recognition process (Table 1).

Cell recognition algorithm

The cell recognition algorithm consists of five main process-
ing steps, listed below, operating in cascade on an image in
order to perform the O. ovata counting task.

(1) A pre-processing module based on the functions of the
library OpenCV (http://www.opencv.org) implemented an
edge detection scheme. Some of the operations that take
place in this module are adjustment of the local contrast of
the image through the Contrast Limited Adaptive Histogram
Equalization (CLAHE) algorithm (Zuiderveld 1994), image
resizing to a standard size suitable for subsequent elaboration
and global histogram normalization to enhance edge struc-
tures. This step was performed on both bright-field and quan-
titative phase images.

(2) An automated algorithm (Bernal et al. 2008) for the
localization of interesting regions in the images was imple-
mented (i.e. localization of possible O. ovata). Behind the
localization scheme, the main peculiarity is that O. ovata has

Fig. 1 Overview of the
processing steps of the OvMeter
tool. After the collection of the
algae and sample preparation,
image acquisition is performed,
followed by the presented
pipeline of image processing,
which culminates in an estimate
of the algal concentration
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a distinctive drop-like shape. A representation of a typical
O. ovata cell was elaborated by calculating the average shape
among a large set of individual cells (Fig. 2a). This average
specimen was used as a template for generating a set of rep-
resentative cells of various rotations, eccentricities and scales.
The number of different representative cells has been set ac-
cording to a trade-off between computational complexity and
detection accuracy of the localization algorithm. After having
tested several combinations, it was found that a total of 64
cells (8 rotations, 2 eccentricities and 4 scales) was the best
choice for the OvMeter system. This set is called template set
(Fig. 2b). Every cell in the template set was pre-processed by
means of convolution with the Laplacian of Gaussian wavelet.
Ultimately, every template in the template set was convoluted
with the preprocessed image of the first step of the algorithm

generating one convolution map for every template. Imposing
a threshold across all convolution maps and selecting the ex-
treme points suggests that where possible,O. ovata cells could
lies on the image (Fig. 2c). This step was first performed on
bright-field images, then on the QP images, which enhances
the localization scheme performance on samples that contain
large amounts of debris or particularly difficult overlaps.

(3) The segmentation (i.e. partitioning of a digital image
into multiple sets) of the regions of interest selected in the
previous step was performed: this was accomplished by
selecting a sufficiently large area around each center and com-
puting the binary map of this local area allowing the best
separation of the cell from the external background. Given
that the center point is inside the cell, the size of the local area
should be large enough to include the whole contour of the

Table 1 Description of the main performance measurements

Name Formula Note

Sensitivity TP/(TP + FN) Measures the proportion of positives that are correctly identified.

Specificity TN/(TN + FP) Measures the proportion of negatives that are correctly identified.

Precision TP/(TP + FP) Relates to reproducibility and repeatability and refers to the level of measurement
that yields consistent results when repeated.

Accuracy TP + TN/(TP + TN + FP + FN) Level of measurement that yields true (no systematic errors) and consistent
(no random errors) results, and represents the degree of closeness of measurement
to the true value. An accuracy of 100% means that the measured values are exactly
the same as the given values.

Fall-out FP/(FP + TN) Closely related to specificity and is equal to 1 specificity. It can be looked at as the
probability that a non-relevant data is retrieved by the query.

F1-score 2TP/(2TP + FP + FN) Considers both the precision and sensitivity of the test.

TP true positive results, TN true negative results, FP false positive results, FN false negative results

Fig. 2 Basis for localization scheme. a Optical image of an O. ovata cell
(left) and a pictorial representation of the averaged pattern shape of a
O. ovata cell (right). b Example of different values of scale, rotation,
and eccentricity chosen as template to localize as many O. ovata
individuals as possible (considering the inevitable presence of a

percentage of false positive results that will be removed during the
classification step). c Example of an optical image output from the
localization step: the method is able to find almost all O. ovata
individuals within the image
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located cell. The representation of the local image area as a
graph allows the interpretation of the image segmentation task
as a version of the well-known maximum flow problem on
graphs. To deal with it, the Boykov-Kolmogorov algorithm
(Boykov and Kolmogorov 2004) for solving mincut/max flow
problems on graphs was used, as implemented by Computer
Vision Research Group (http://vision.csd.uwo.ca/code/). This
step was performed on bright-field images if the center of
segmentation was found in the bright-field image; otherwise,
this step was performed on the QP images. All of the above
steps are thoroughly discussed by Gjeci (2015).

(4) A feature set was identified: it is a mix of shape and
texture descriptors based on previous scientific works on
O. ovata (Besada et al. 1982; Accoroni et al. 2012; Honsell
et al. 2013; Escalera et al. 2014; Kreshchenovskaya and
Orlova 2014). A set of 18 features of which 11 features were
extracted from the shape of the region and 7 features were
extracted from the texture are reported in Table 2.

In both types of images (2D images and QP images),
feature extraction was performed on regions of interest,
identified during segmentation step. It is worth to note
that only bright-field images carry texture information,
useful to discriminate between objects of similar shape
but different internal content. Texture of QP images is
not meaningful from the point of view of classification,
due to the highly variable transparency properties of
O. ovata cells and the unavoidable presence of artefacts.
Nevertheless, QP images are used as a complementary
way to locate and segment cells (in particular in cluttered
samples) and to compute shape descriptors.

(5) Lastly, the classification was implemented by using the
BT learning algorithm.

Results

OvMeter performance

Performance evaluation relied on the comparison of the auto-
mated counter with the human inspection. To quantify the
performance of the system, an expert user was asked to man-
ually evaluate the same images to which OvMeter applied the
classification procedure. The exploited test dataset, which was
completely independent from the training dataset, consisted of
around 23,000 objects (including individuals and clutter
noise), where 5000 items were O. ovata, thus reproducing
the real proportion of true and false objects that can be com-
monly found in marine field samples (105 ÷ 104 cells L−1).

The total number of O. ovata cells counted by the system,
operating in 2D mode on seven different experiments (all
samples collected in Genova Quarto, site), was 4642
(Table 3), compared to 4742 counted by the operator, thus
providing a high degree of correlation between the two tech-
niques (Fig. 3), a rather small dispersion (R2 coefficient > 0.9)
and an error of the system of 2.1%. The choice of a test set
completely independent from the training set excluded the risk
of overfitting, providing statistically reliable performance.

Object recognition performance was evaluated by
analysing the contingency table (Table 3), which compares
the actual values with those estimated, providing the degree
of reliability of the classification based on different perfor-
mance measurements. Considered indexes are reported in
Table 4, ranged between 0 and 1. Sensitivity, specificity, pre-
cision, accuracy and F1 score showed values >0.9, thus
highlighting an excellent reliability of the system in counting
cells, compared to manual results. In particular, the obtained

Table 2 Description of shape and texture features

Shape features Description

1–7 Invariant Hu moments A set of shape descriptors robust to scale and rotations (Hu 1962), 7 values up to the third order

8 Axis ratio Minor axis/major axis (1 for almost circular objects and <1 for elongated ones)

9 Convexity The ratio between the area of the object and its convex hull (1 for convex objects)

10 Symmetry The area of intersection between the object and its version flipped with respect to the major symmetry axis,
normalized by the object area (1 for perfect symmetry)

11 Shape entropy Defined as the entropy of the radius histogram (low values for nearly circular objects)

Texture features Description

1 Average grey level Mean value of the grey level scale (low values for darker objects)

2 Global contrast Difference of average grey value inside and outside the object, normalized to the sum of the same values

3 Entropy First order statistics of grey values inside the object

4 Angular second moment A measure of smoothness of the grey level spatial distribution, computed from the grey level
co-occurrence matrix

5 Local contrast A measure of local grey-level variations, based on the co-occurrence matrix

6 Inverse difference moment Further second order statistics of grey level local variations

7 Second order entropy Defined over the grey level co-occurrence matrix instead of the grey level histogram
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values indicated the ability of the OvMeter tool to correctly
identify the target cells and discriminated them from similar
objects (sensitivity and specificity), to provide consistent re-
sults when the experiment is repeated (precision, F1 score) as
well as to reach a good degree of closeness to the true value
(accuracy). In accordance with previous values, the fall-out
index was near 0, since it represents the probability that a
non-relevant data is retrieved as positive during classification.

Performance analysis can be enriched by evaluating
the distribution of real and predicted counts for each
sample. This allows estimation of the degree of correla-
tion among single counts, therefore inferring if accuracy
of the prediction can be related to the sample’s content
and verifying if error percentage is correlated to the cell
density. This study was performed on seven samples
listed in Table 5 showing various cell densities, thus pro-
viding diverse levels of O. ovata abundance. Numerical
values obtained for each sample are reported in Table 5.
Samples containing few O. ovata cells are prone to false
negative results, when automatically counted (compared
to the manual count), thus increasing the relative error
rate. As sample cell density increases, the number of
false positive results decrease leading, first, to a reduced
final error rate and, then, to invert error trend. In general,
the absolute error remains almost constant, being depen-
dent mainly on the number of processed images and not
on cell density.

Subsampling strategy

Evaluations were carried out in order to assess the minimum
number of images to be captured to provide a reliable estimate
of the number of cells contained in the counting chambers. In
fact, the complete scanning of a biological sample requires the
acquisition and processing of more than 1000 images.
Additionally, the use of phase reconstructed images required
the acquisition of more than four images in each position
along the Z-axis, thus leading to a total scanning time for a
whole sample of >2 h. Therefore, in order to save processing
time, it becomes crucial to assess the minimum number of
images necessary for obtaining a reliable statistical counting
of cells. Obviously, this approximation generates an additional
error, due to inferring data from areas which are not directly
inspected. The produced error can be evaluated by assuming a
uniform distribution of the cells in the sample. To pursue this
aim, statistical simulations of under-sampling of a Sedgewick-
Rafter counting chamber have been performed. Figure 4
shows a 2D representation of the distribution of an automated
count performed on a selected region of a sedimentation
chamber, corresponding to 882 fields of view of the
OvMeter optical system. Colours (from blue to red) provide
information about the number of O. ovata cells identified in
each field of view. Considering the standard deviation value as
the under-sampling error and assuming uniform cell distribu-
tion, the relations to be verified in order to estimate the

Fig. 3 Comparison between automated and manual counts for seven
independent and differently dense samples collected in Genova Quarto
site, highlighting linear trend among automated and manual results (eq.
y = 0.9945x, R2 = 0.9987)

Table 4 Performance
measurements obtained
for samples collected in
Genova Quarto site

Index Value

Sensitivity 0.914

Specificity 0.983

Precision 0.934

Fallout 0.017

Accuracy 0.969

F1 score 0.924

Table 3 Contingency table of automated identification of Ostreops
ovata respect to counts obtained from a visual inspection. Ostreopsis
ovata cells counted with the OvMeter numered 4642 (TP + FP)
compared to 4742 (TP + FN) counted by the operator

Actual value: true Actual value: false

Predicted value: true 4335 (TP) 307 (FP)

Predicted value: false 407 (FN) 17,992 (TN)

Table 5 Numerical values obtained by counting Ostreopsis ovata in
samples of different cell densities. The samples were collected in Genova
Quarto site

Sample Real count Automated
count

Relative error
(%)

Absolute
error

1 62 57 −8.0 −5
2 74 69 −6.7 −5
3 99 86 −13.1 −13
4 567 523 −7.7 −44
5 835 810 −3.0 −25
6 1083 1052 −2.8 −31
7 2022 2045 +1.1 +23
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minimum number of images needed to ensure a reliable esti-
mation are

σK < EA⇒K >
N ⋅C0

E2
A

εK < ER⇒K >
N

E2
R⋅C0

ð9Þ

where σK and εK are, respectively, the absolute and the relative
errors, EA and ER indicated the expected absolute and
relative errors, N is the total number of images, K is the
number of sampled images, and C0 is the expected concentra-
tion of cells (obtained by screening Kmin images). The
relations reported in (9) determine K by imposing specific
absolute and/or relative errors. Table 6 reports hypothetical
values of K obtained by simulating sedimentation in a
Sedgewick-Rafter counting chamber of samples presenting
diverse and typical O. ovata concentrations, assuming
EA = 80 and ER = 5%. Graph in Fig. 5 shows the error varia-
tion caused by image under-sampling correlated with the av-
erage number of cells present in each image, considering sets
containing 100, 200, 300 and 400 images.

As reported, the statistical uncertainty introduced by the
under-sampling is high when samples are modestly populated

(first stages of a HAB), while it reduces considerably for high
density samples (corresponding to the actual peak of HAB),
which are in fact the cases of interest for risk assessment.

Segmentation comparison

QP reconstructed images affect the pipeline in multiple steps,
supporting object recognition and performing a pre-screening
of items used to feed the classifier. The use of TIE-QPM
proved to be particularly advantageous for complex images,
such as those with a high overlap of microalgae and debris, the
microalgae aggregation or the presence in the sample of
microalgae with a shape very similar to O. ovata, such as
the dinoflagellates Prorocentrum lima and Prorocentrum
micans. In order to show the complementarity of information
coming from the two considered types of images (2D and QP
images), a test was carried out on a sample and results of the
segmentation step (Fig.6) are reported by mapping them on
both images separately. The algorithm working on 2D images
(Fig. 6a) selects P. lima (Fig. 6a, item 1) confusing it with
O. ovata, thus resulting in over-segmentation (although this
result does not affect system output since discrimination is
performed by BT in the classification step, which follows
the ‘segmentation’ phase). Similarly, it happens for the
microalga Coolia monotis (Fig. 6a, item 2). The exploitation
of QP reconstructed images (Fig. 6b) emphasizes O. ovata
features, avoiding segmenting objects different from the target
(Fig. 6b, items 1 and 2). Boxes highlighted in Fig. 6a, b show
another typical case where integration of 2D and QP images
can retrieve more complete information:O. ovata cells hidden
by debris. 2D image segmentation correctly identifies
O. ovata cell in Fig. 6a—item 3, but omits the identification
ofO. ovata cell in Fig. 6a—item 4. Segmentation of QP image
was able to highlight both of them (Fig. 6b—items 3 and 4),

Fig. 4 Two-dimensional representation of the distribution of an
automated count on a selected region of the Sedgewick-Rafter counting
chamber. The region was 12.7 mm × 26.4 mm sized. Each pixel
represents a field of view of the optical system. The count of O. ovata
cells identified in each field of view is represented with a chromatic scale
corresponding to a count range between 0 (blue—lowest) and 10 (red—
highest) of O. ovata cells identified there

Fig. 5 Plot of under sampling error variation in percentage respect to
number of cell per image. Each bar represents a set of 100 (full black),
200 (oblique dense stripes), 300 (oblique medium stripes) and 400
(oblique sparse stripes) images

Table 6 Hypothetical values of K obtained by simulating sample
sedimentation in a Sedgewick-Rafter counting chamber. EA indicates
the number of images obtained by assuming a threshold on the absolute
error value. ER indicates the number of images obtained by assuming a
threshold on the relative error value

Total count Counts per
image

Total no.
of images
(EA)

Total images
no. (ER)

Optimal
images
no. (K)

1328 1.5 183 266 183

2656 3.0 234 133 133

13,280 15.1 1171 27 27
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assessing the power of 2D and QP reconstructed images syn-
ergic analysis to obtain a comprehensive object identification.

TIE-QPM effectiveness analysis

Results obtained from 2D image analysis and from 2D and
TIE-QPM integration assess the benefit of using a double 2D/
TIE-QPM segmentation step, in order to better define the cell
shape and the related geometrical descriptors even in extreme
samples condition, such as when the background is very com-
plex and the cell borders are not clearly identifiable in the
bright-field image (Fig. 7c). In order to evaluate performance
related to TIE-QPM exploitation together with 2D image anal-
ysis, comparisons have been run on samples from different
sampling sites in Italy, Spain and France.

Analysing data reported in Table 7, two clusters can be
identified: the first (cases 1, 3, 5, 6, 7, 8) including sam-
ples where similar results come from analysis of 2D im-
ages and analysis taking advantage of TIE-QPM, and the
other (cases 2, 4, 9, 10) grouping samples where contri-
bution of QP acquisition affects analysis. This discrimina-
tion reflects sample composition. Samples presenting
O. ovata cells with well-defined edges (Fig. 7a, b) gain
little improvement from TIE-QPM approach exploitation,

and the algorithm working on 2D images is able to re-
trieve results analogous to those obtained by TIE-QPM
integration. Samples composed by a high number of dif-
ferent and overlapped objects (Fig 7c) take advantage
from TIE-QPM acquisition. The utility of TIE-QPM inte-
gration is not related to the number of O. ovata cell pop-
ulating the sample, but to the wide presence of
macroalgae fragments or other microorganisms or debris
in the sample, partially hiding the dinoflagellates. In order
to provide evidence about TIE-QPM advantage, Pins Mar,
Chiavari and Fiascherino cases were analysed, where
QPM power is largely exploited to dramatically refine
automated counting. Manual count represents the refer-
ence for results goodness, keeping in mind that operator
variability can drastically affect output (Culverhouse et al.
2003). As shown in Table 7, manually inspected images
showed the presence of 4713, 2630 and of 839 O. ovata
cells respectively for samples of Pins Mar, Chiavari and
Fiascherino. When considering just 2D image analysis,
the system retrieved an automated count of 4276, 2331
and 646 O. ovata cells for Pins Mar, Chiavari and
Fiascherino respectively, largely down-estimating the real
quantity of O. ovata cells in the samples estimated by
manual counting (absolute errors 437, 299 and 193,

Fig. 7 Representative 2D images showing different composition of
samples. a Sample (from Haliotis, France ) including rare and well-
defined O. ovata cells, without debris, sand nor other algal fragments. b
Sample (Rochambeau, France) showing large presence of O. ovata cells

in a quite uniform and clean substrate. c Sample (from Chiavari, Italy)
presenting a mix of elements surrounding O. ovata cells which diminish
the possibility of dinoflagellate detection. Scale bar = 100 μm

Fig. 6 Marine field sample analysed by 2D and TIE-QPM strategies.
Results of the localization/segmentation steps on a a 2D image and b
the corresponding quantitative phase reconstructed image are shown.
Identified cells are marked through green outline. Red arrows and

boxes indicate objects of interest, differently identified by 2D image
segmentation and QP image segmentation. (1) Prorocentrum lima, (2)
Coolia monotis, (3 and 4) O. ovata cells. Scale bar = 100 μm
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respectively for the three sites; relative errors 9, 11 and
23%, respectively, for the three sites).

Exploiting information from phase reconstructed images,
the system counts 4354, 2465 and 744 O. ovata for samples
collected in Pins Mar, Chiavari and in Fiascherino, with a
decrease of both absolute (359, 165 and 95 elements, respec-
tively) and relative (7.6, 6.2 and 11%, respectively) errors. As
shown in these cases, a loss of information can be recovered
by exploiting TIE-QPM data integration.

Discussion

Monitoring of aquatic microscopic species is a necessary step
for controlling HABs or population trends of endangered spe-
cies. Generally, monitoring is mainly run by visual inspection,
which is a repetitive, boring and tiring job and highly prone to
errors. In the last decade, many tools have been proposed for
automating the process. In this paper, the OvMeter tool is
presented: it performs automated counting of O. ovata cells
and returns algal cell concentration estimation, in order to help
monitoring HAB and to prevent risks to human health. The
development of a new device was necessary since the already
existing tools for other marine species rely on features not
suitable for quickly determining the concentration of
O. ovata. In particular, for O. ovata, image-based classifica-
tion fluorescence detection, used as a marker in many recog-
nition methods for marine microorganisms (Rodenacker et al.
2006; Sosik and Olson 2007; Schulze et al., 2013), cannot be
exploited since Lugol’s acidic solution, suggested by interna-
tional guidelines for preserving O. ovata, drastically reduces
the strength of the fluorescence signal. Moreover, the drop-
like shape of O. ovata cells is peculiar and rarely compatible
with already developed segmentation approaches. In order to

reduce the burden of routine identification and quantification
ofO. ovataHAB, OvMeter, a low-cost, automated, embedded
opto-electronic system, was developed and here presented.

OvMeter tool allows the acquisition of automated, timely,
reliable and reproducible results, and includes valuable fea-
tures that make it suitable for O. ovata monitoring. OvMeter
aims to substitute human cell counting, maintaining sample
treatment procedures totally analogous to guidelines sug-
gested by ISPRA-ARPA (2012) and by European operational
(http://m3-habs.net/guidelines/) protocols. This allowed a
reasonable comparison among OvMeter results and human
inspection output. OvMeter performance was measured
(Table 3). An excellent reliability of OvMeter was highlighted
in (1) correctly identifying the target cells and discriminating
them from similar objects (sensitivity and specificity), (2) pro-
viding consistent results when the experiment is repeated (pre-
cision, F1 score), (3) reaching a good degree of closeness to
the true value (accuracy), and (4) avoiding the positive label-
ling of non-relevant data during classification (fall-out).
Samples showing higher concentrations of O. ovata, more
critical when assessing intoxication risks, are subjected to
small errors (1–3%), indicating reliability of the system in
monitoring critical conditions. Moreover, OvMeter is able to
retrieve repeatable and unbiased results, and could be easily
run even by non-expert operators.

The high level of performance shown by OvMeter is as-
cribable majorly to the exploitation of TIE-QPM technique,
which provides quantitative phase reconstructed images com-
puted from a Z-stack acquisition of out-focus bright-field im-
ages solving TIE, in synergistic cooperation with 2D images
analysis. This represents one of the most distinctive aspects of
OvMeter tool and is added value. TIE-QPM is a non-
interferometric technique belonging to the emerging QPI
methodologies, such as single-exposure online digital holog-
raphy (Javidi et al. 2005) and off-axis digital holography mi-
croscopy (El Mallahi et al. 2013; Zetsche et al. 2014), which
gain quantitative information on physical and chemical prop-
erties of semi-transparent samples by optical phase shift of the
light radiation passing through. Commonly, QPM images add
information related to thickness and refractive index fluctua-
tions of the examined organism, which provide knowledge
about the presence of organelles or other internal structures
(Mir et al. 2012, Zetsche et al. 2014). In the described proce-
dure, dinoflagellates’ internal structures are obscured by the
exploitation of Lugol’s acidic solution. Nevertheless TIE-
QPM remains a valid strategy, because it improves cells’
edges definition (increasing contrast with background) and
acting in cooperation with 2D bright images; it is able to
resolve objects even at critical sample conditions, thus im-
proving counting reliability. In particular, the contribution of
TIE-QPM acquisition is carried out in the localization and
segmentation steps and in the computation of the shape de-
scriptors in the pipeline scheme of the cell recognition

Table 7 Cell counts from 2D automated counting, 2D/TIE-QPM
integrated automated counting and a manual inspection of samples from
different sampling sites in Spain, France and Italy

Site 2D
AC

2D / TIE - QPM
IAC

MI N

1 Blau Mar-Spain 1922 1924 1745 508

2 Pins Mar-Spain 4276 4354 4713 509

3 Rochambeau-France (1) 713 717 704 323

4 Rochambeau-France (2) 4246 4283 4175 509

5 Rochambeau-France (3) 96 96 12 608

6 Haliotis-France (1) 35 35 25 504

7 Haliotis-France (2) 882 886 864 494

8 Genova Quarto-Italy 437 440 378 509

9
10

Chiavari-Italy
Fiascherino-Italy

2331
646

2465
744

2630
839

507
608

AC automated counting, IAC integrated automated counting, MI manual
inspection, N number of images analysed
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algorithm. Although phase images do not have a meaningful
texture to be exploited, the borders extracted from the phase
images can be imposed over the bright-field image, defined
over the same pixel grid and used as a new possible segmen-
tation, while the texture information is easily recovered the
bright-field images. Thus, the classifier can operate on data
coming from both 2D and QP images in the same way, with-
out the need of any specific 2D–QPM training. TIE-QPM
integration shows major advantage when working on samples
including other microorganisms and debris hiding the dinofla-
gellates. In these cases, the detection and identification of
O. ovata appeared to be remarkably improved, diminishing
distance among automatic results and manual count (taken as
reference for results goodness). It is worth to note that no cases
showed identical values of manual and automated results: this
can be ascribed to operator variability which can drastically
impact results. Culverhouse et al. (2003) reported that the
performance of human operators in identifying and counting
correctly cells is affected by several psychological factors
such as fatigue and boredom, bias from expectations and
short-term memory limit, and it is estimated to be about
70%. The benefit of using a double 2D/TIE-QPM segmenta-
tion step, in order to define cell localization and the related
geometrical descriptors was showed in the comparative anal-
ysis running on samples from different sampling sites in Italy,
Spain and France collected during the summer 2015. In par-
ticular, samples collected in Pin Mar, Chiavari and
Fiascherino sites were composed by a mix of elements includ-
ing debris and various microorganisms other than O. ovata
hiding the dinoflagellate cells: these samples represent good
case studies where TIE-QPM power exploitation dramatically
refine automated count.

Finally, it is worth noting that OvMeter works as a unique,
embedded, built-in system, where software and hardware
components cooperate to perform a well-defined task. This
brings a set of advantages. It enhances performance in terms
of time consumption, since image acquisition and processing
steps can be run in parallel (i.e. it can acquire the next image
while the current one is being processed). This approach
speeds up the counting results, thus permitting to monitor
coasts more frequently and widely, and enabling a fast re-
sponse to the general population in case of intoxication risks.
Moreover, the automatic policy of the system can decide to
stop image acquisition and cell counting when reaching a
sufficiently reliable value (i.e. number of O. ovata cells is
either very low or very stable, and the number of processed
images reaches a predefined threshold to avoid under-sam-
pling) before the analysis of the entire counting would have
been completed.

In conclusion, in this paper, the OvMeter tool is presented
as an integrated optical system devoted to monitoring HABs
of O. ovata. This tool is able to measure the concentration of
O. ovata present in marine field samples, automatically and

independently from the skills of the operator. The main ad-
vantage of the system is that it fully adheres to international
guidelines concerning algal sampling and analyses and works
in the complete absence of a human operator. The developed
algal recognition tool relies on a machine learning approach
(i.e. BT) and in order to enhance the counting performance,
the implemented algorithm was fed with 2D and QP images.
The integration of these two data types improves object iden-
tification and facilitates target recognition, assessing perfor-
mance similar to those achieved by human inspection and
shortening time. Finally, it is worth noting that the developed
counting algorithm was finely tuned toO. ovata features, thus
exploiting the shape of the species to be searched. However,
the system can be adjusted to recognize other microorganisms,
if a novel template set and new training and test datasets for
classifications are produced.
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