qEV1 USER MANUAL

SPECIFICATIONS AND OPERATIONAL GUIDE FOR qEV1 COLUMNS

RAPID & RELIABLE ISOLATION OF EXTRACELLULAR VESICLES

Izon Science Ltd. provides this document to its customers with a product purchase to use in the product operation. This document is copyright protected and any reproduction of the whole or any part of this document is strictly prohibited, except with the written authorisation of Izon Science Ltd.

The contents of this document are subject to change without notice. All technical information in this document is for reference purposes only. System configurations and specifications in this document supersede all previous information received by the purchaser.

Izon Science Ltd. makes no representations that this document is complete, accurate or error-free and assumes no responsibility and will not be liable for any errors, omissions, damage or loss that might result from any use of this document, even if the information in the document is followed properly.

This document is not part of any sales contract between Izon Science Ltd. and a purchaser. This document shall in no way govern or modify any Terms and Conditions of Sale, which Terms and Conditions of Sale shall govern all conflicting information between the two documents.

All third-party trademarks are the property of their respective owners.

Izon Science Ltd PO Box 9292 Addington Christchurch 8024 New Zealand Telephone: +64 3 357 4270 Email: support@izon.com Website: www.izon.com

TABLE OF CONTENTS

1	Definitions and Writing Conventions	4
2	Safety and Hazards	6
2.1	Hazards	6
2.2	Storage	8
2.3	Disposal	8
3	Introduction to Size Exclusion Chromatography	9
3.1	Overview	9
3.2	Intended Use	11
3.3	qEV1 Specifications	12
3.4	qEV1 Performance Characteristics	13
3.5	qEV1 EV Elution Profile	14
3.6	Choosing a Purified Collection Volume	15
4	Manual Operating Instructions	17
4.1	Operational Recommendations	17
4.2	Column Setup and Equilibration	19
4.3	Sample Loading	20
4.4	Column Flush and Storage	20
5	Resources	
5.1	Column Cleaning and Sanitisation	21
5.2	Protocols for EV Isolation from Common Sources	21
5.3	FV Analysis Using TRPS	21

1 / DEFINITIONS AND WRITING CONVENTIONS

Make sure to follow the precautionary statements presented in this guide. Safety and other special notices will appear in boxes and include the symbols detailed below.

Table 1: Safety and Hazard Symbols

	This symbol indicates general advice on how to improve procedures or recommends measures to take in specific situations.
A	This symbol indicates where special care should be taken.

Table 2: Terminology Used in this Manual

TERM	DEFINITION	
Buffer Volume (BV)	The volume of liquid that corresponds to the volume before the Purified Collection Volume (PCV).	
Chromatography	A method used primarily for separation of the components of a sample. The components are distributed between two phases; one is stationary while the other one is mobile. The stationary phase is either a solid, a solid supported liquid, or a gel/resin. The stationary phase may be packed in a column, spread as a layer or distributed as a film. The mobile phase may be gaseous or liquid.	
Column Volume	The total volume between the upper and lower frits.	
Degassing	Degassing involves subjecting a solution to vacuum to "boil" off excess dissolved gas e.g. applying a vacuum to a flask.	
Flow Rate	The volumetric flow in mL/min of the carrier liquid.	
Purified Collection Volume (PCV)	The volume immediately succeeding the buffer volume, containing particles of interest purified from the loaded sample.	
Recovery Rate	The percentage of vesicles that come out of the column compared with what went in.	
Smart Column	A qEV column with an integrated RFID chip. This chip is used by the Automatic Fraction Collector (AFC) instrument to recognise the type of column attached to the instrument. This chip does not affect manual usage of the qEV column.	

2 / SAFETY AND HAZARDS

Refer to the Safety Data Sheet for the classification and labelling of hazards and associated hazard and precautionary statements. The Safety Data Sheet for qEV Isolation columns is located at www.izon.com/resources

2.1 Hazards

qEV SMART columns are a laboratory product. However, if biohazardous samples are present, adhere to current Good Laboratory Practices (cGLP) and comply with any local guidelines specific to your laboratory and location.

Disposal of Biohazardous Material

The qEV column contains < 0.1% sodium azide, which is potentially fatal if swallowed or in contact with skin. Please review the following guidelines and precautions prior to each use of the qEV column:

Prevention:

- 1. Do not get into eyes, on skin, or on clothing.
- 2. Wash skin thoroughly after handling.
- 3. Do not eat, drink, or smoke when using this product.
- 4. Avoid release of product into the environment.
- Wear protective gloves and clothing; follow general laboratory precautions.

Response

- 1. IF SWALLOWED: immediately call a POISON CONTROL CENTRE/Doctor.
- IF ON SKIN: Gently wash with plenty of soap and water and immediately call a POISON CONTROL CENTRE/Doctor.
- 3. Remove immediately any contaminated clothing and wash before reuse.
- 4. Collect any spillage and dispose of appropriately.

For more information, see the MSDS Documentation for Izon qEV SMART columns: www.izon.com/resources

Sodium azide can be fatal if swallowed or in contact with skin. It can cause damage to neurological organs through prolonged or repeated exposure. It is very toxic to aquatic life with long lasting effects.

Be sure to adhere to the following guidelines and comply with any local guidelines specific to your laboratory and location regarding use and disposal.

General Precautions:

- Always wear laboratory gloves, coats, and safety glasses with side shields or goggles.
- Keep your hands away from your mouth, nose, and eyes.
- Completely protect any cut or abrasion before working with potentially infectious or hazardous material.
- Wash your hands thoroughly with soap and water after working with any potentially infectious or hazardous material before leaving the laboratory.
- Remove watches and jewellery before working at the bench.
- The use of contact lenses is not recommended due to complications that may arise during emergency eye-wash procedures.
- Before leaving the laboratory, remove protective clothing.

- Do not use a gloved hand to write, answer the telephone, turn on a light switch, or physically engage people without gloves.
- Change gloves frequently.
- Remove gloves immediately when they are visibly contaminated.
- Do not expose materials that cannot be properly decontaminated to potentially infectious or hazardous material.
- Upon completion of the tasks involving potentially infectious or hazardous materials, decontaminate the work area with an appropriate disinfectant or cleaning solution (1:10 dilution of household bleach is recommended).

Dispose of the following potentially contaminated materials in accordance with laboratory local, regional, and national regulations:

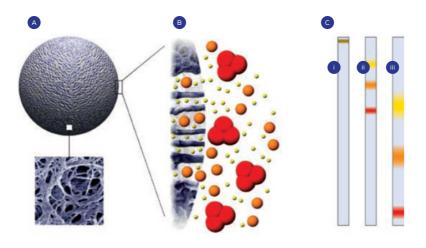
- Biological Samples
- Reagents
- Used reaction vessels or other consumables that may be contaminated

2.2 Storage

Rapid changes in temperature should be avoided, as this can introduce bubbles into the gel bed.

Unused qEV columns can be stored at room temperature. qEV columns should be stored at +4 to +8 $^{\circ}$ C after use, under 20% ethanol or <0.05% w/v sodium azide.

2.3 Disposal


Waste buffer should be disposed of in a safe manner. Sodium azide accumulation over time in copper pipes can result in an explosion.

3 / INTRODUCTION TO SIZE EXCLUSION CHROMATOGRAPHY

3.1 Overview

Izon's qEV Size Exclusion Chromatography (SEC) columns separate particles based on their size as they pass through a column packed with a porous, polysaccharide resin. As molecules enter the resin, smaller particles become trapped in the pores and their exit from the column is delayed (Figure 1C). As liquid exits the column, sequential volumes are collected. Particles will be distributed across the volumes based on their size, with the largest particles exiting the column first and the smallest particles exiting the column last.

The packed column is equilibrated with a buffer, which fills the column. The total column volume is occupied by both the solid resin (stationary phase) and the liquid buffer (the mobile phase). As the particles do not bind to the resin, the buffer composition will not significantly affect the resolution (the degree of separation between peaks).

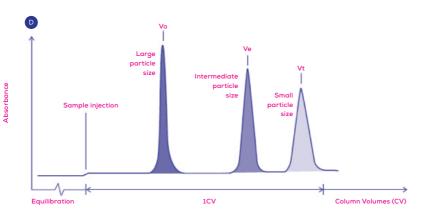


Figure 1: Process of Size Exclusion Chromatography (A) Schematic picture of a resin bead with an electron microscopic enlargement. (B) Schematic drawing of sample molecules diffusing into the pores of the particle. (C) Graphical description of separation: (i) sample is applied to the column; (ii) the smallest particles (yellow) are more delayed than the largest particles (red); (iii) the largest particles are eluted first from the column. Band broadening causes significant dilution of the particle zones during chromatography. (D) Schematic chromatogram. From: GE Healthcare and Biosciences. (n.d.). Size Exclusion Chromatography Principles and Methods [Brochure]. Uppsala, Sweden. Accessed June 2019.

3.2 Intended Use

Izon qEV Isolation columns isolate extracellular vesicles from biological samples. qEV1 columns are equipped with RFID chips for use with the Izon Automatic Fraction Collector (AFC). These chips will not impact manual use. The qEV column is intended to be used in research laboratories by professional personnel for research use only. The qEV column is not intended for diagnostic purposes and should not be used to make treatment decisions.

qEV columns are designed to isolate and purify vesicles from most biological samples, including:

- Serum
- Plasma
- Saliva
- Urine
- Cerebrospinal Fluid (CSF)
- Cell culture media

NOTE: most 'raw' samples cannot be directly run on qEV columns and analysed with TRPS without some preparation such as centrifugation and concentration steps. Contact the Izon Support Centre for recommendations and protocols. support.izon.com

3.3 qEV1 Specifications

Table 3: qEV1 Specifications

Column name	qEV1	
Column series	qEV1/70 nm	qEV1/35 nm
Optimal Separation Size	>110 nm	<110 nm
Sample load volume	Up to 1 mL*	
Column volume	13.5 mL	
Optimal fraction size	0.7 mL	
Buffer volume**	4.0 mL	
Flush volume	27 mL	
PCV**	2.8 mL	
Elution peak after buffer volume**	2.1 mL	
Operational temperature	18 to 24 °C	
Buffer	PBS	
Largest size passable	1 μm	
Top and bottom filters size	20 µm	
pH stability working range	3 - 13	
pH stability cleaning-in-place (CIP)	2 - 14	
Shelf life (if stored correctly)	12 months	

^{*}Loading higher sample volumes results in a lower level of purity in the later vesicle volumes, greater overlap between protein and EV elution peaks, and a higher protein peak within the PCV. Loading lower sample volumes results in a higher dilution factor of the sample. The optimal recommended sample volume for purity on the qEV1 is 1 mL.

 $[\]ensuremath{^{**}}\mbox{\sc Values}$ based off analysis of human plasma samples.

3.4 qEV1 Performance Characteristics

A higher recovery in the PCV of particles larger than 60 nm occurs on the qEV/35 nm columns compared with the qEV/70 nm series (Figure 2). Proteins typically elute slightly earlier on the qEV/35 nm series.

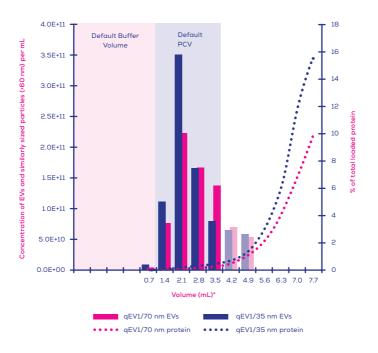


Figure 2: Comparison of total protein elution levels and concentration of extracellular vesicles (EVs) and similarly sized particles 5 60 nm between qEV1/35 nm and qEV1/70 nm columns with 1 mL of human plasma loaded. EV concentration was measured using an Exoid and protein levels by bicinchoninic acid (BCA) assay. Faded bars represent calculated individual concentration based off pooled sample measurements.

[&]quot;Volumes are labelled as the highest volume in that sample i.e label "0.7" refers to the volume from 0.0-0.7 mL after the buffer volume, label "1.4" refers to the volume from 0.7-1.4 mL after the buffer volume and so on.

3.5 gEV1 EV Elution Profile

The elution of vesicles typically peaks at 2.1 mL after the buffer volume, for a 1.0 mL sample volume and collecting 0.7 mL volumes. Figure 3 shows the elution of vesicles when 1.0 mL of human plasma is loaded onto a qEV1/35 nm column.

The majority of EVs typically elute in 3.5 mL. If higher purity is desired, collect only the first 2.1 mL. The user therefore chooses between maximising recovery by collecting a larger volume or maximising purity by collecting a lesser volume.

The elution of plasma protein is slower, eluting predominantly from 2.8 – 16.0 mL after the buffer volume. Any vesicles recovered beyond 2.8 mL contain higher protein contamination and may be less suitable for downstream analysis because of their lower purity.

Protein elution profiles can be obtained by performing bicinchoninic acid (BCA) assay analysis on individual fractions, or an alternative colourimetric protein assay.

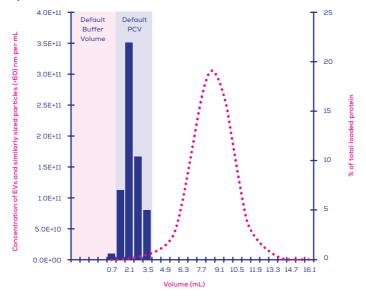


Figure 3: Typical elution profile for a qEVI/35 nm column with 1 mL of human plasma loaded; proteins elute later than extracellular vesicles (EVs) and similarly sized particles >60 nm. EV concentration was measured using an Exoid and protein levels by bicinchoninic acid (BCA) assay.

3.6 Choosing a Purified Collection Volume

The optimal PCV will depend on the elution profile of the sample type and the applications/analytical methods used downstream. This section makes recommendations based off data collected from qEV1 columns with 1 mL of human plasma loaded; other sample types may differ slightly in elution profile. There are several different optimisation scenarios that may be applicable for specific sample collection (Table 4). The default recommended PCV is a balance between EV recovery and high purity.

Table 4: Recommended parameters for different optimisation scenarios

OPTIMISATION SCENARIO	ADJUSTED BUFFER VOLUME	PCV
EV Concentration (3.6.1)	4.7 mL	2.1 mL (3x 0.7 mL)
EV Recovery (3.6.2)	4.0 mL	4.9 mL (7x 0.7 mL)
Maximum Purity (3.6.3)	4.0 mL	2.1 mL (3x 0.7 mL)
Default setting on AFC	4.7 mL	2.8 mL (4x 0.7 mL)

3.6.1 Optimised for EV Concentration

On average the highest concentration of EVs and similarly sized particles occurs in the volume 1.4–2.1 mL after the defined buffer volume of 4.0 mL (Figure 2). This can vary from sample to sample, possibly peaking at the volumes 0.7–1.4 mL or 2.1–2.8 mL after the buffer volume. To maximise EV concentration from an unknown sample, Izon recommends collecting the entire volume from 0.7–2.8 mL after the defined buffer volume to accommodate for this possible shift in peak. To achieve this the adjusted buffer volume should be set to 4.7 mL.

3.6.2 Optimised for EV Recovery

To collect the majority of EVs eluting off the column, Izon recommends collecting up to 4.9 mL after the defined buffer volume of 4.0 mL, but it should be noted that this volume will contain higher levels of protein than is normally recommended. For downstream applications such as TRPS, which has a protein concentration limit of 200–300 $\mu g/mL$ before measurements become difficult due to the high protein levels. Pooling these samples can mitigate this challenge.

3.6.3 Optimised for EV Purity

To collect a significant number of the EVs a high level of purity, Izon recommends collecting only the first 2.1 mL after the defined buffer volume of 4.0 mL. This keeps the amount of protein in the sample to a minimum whilst still collecting a significant portion of the EVs in the sample.

4 / MANUAL OPERATING INSTRUCTIONS

The following section provides instructions for the manual use of qEV Isolation columns with smart functionality. For use of qEV columns with the Automatic Fraction Collector (AFC) instrument, please see the full AFC User Manual at support.izon.com.

4.1 Operational Recommendations

The following recommendations are provided to ensure optimal performance of the qEV column with smart functionality:

- Centrifuge samples prior to loading onto the column. To avoid clogging of column filters, it is recommended to filter or centrifuge the biological sample to remove large particulate matter.
 - Centrifuge samples at 1,500 $\rm x\,g$ for 10 minutes to remove any cells and large particles.
 - Gently move the supernatant to a new tube and centrifuge again at $10,000 \times g$ for 10 minutes.
 - For microvesicle isolation, use lower g-forces for the second centrifugation step.
- Samples can be concentrated before application to the column or after isolation if needed. It is possible to concentrate samples both before and/ or after use of the qEV column, however Izon offers multiple column sizes to reduce the need for pre-analytical sample concentration. If concentration protocols are needed, please consider the following recommendations:

- Concentration of some sample types may result in the formation of precipitates and protein aggregates, especially for urine samples.
 Concentrated samples should be centrifuged at 10,000 x g for 10 minutes prior to loading onto a qEV column.
- Izon recommends using Merck Millipore concentration devices (Amicon® Ultra Centrifugal filters; C7715). Use according to manufacturer's recommendations.
- Concentration of samples after purification with qEV may result in the loss of some EVs on the membrane.
- Treating columns as single-use is advisable where the vesicles will be analysed for nucleic acids. This will eliminate the possibility of crosscontamination between samples.
- Ensure that the sample buffer has been prepared appropriately. To maintain the functionality of EVs, the flushing buffer should be of the same temperature as the sample buffer. SEC can also be used to exchange the buffer of a sample.
 - Sample buffer temperature should be within the operational temperature of 18-24 °C (65-75 °F).
 - Sample buffers should be degassed and at room temperature
 to avoid air bubbles forming in the gel bed. Rapid changes in
 temperature, for example removing packed columns from a cold room
 and applying buffer at room temperature, can introduce air bubbles in
 the packed bed, resulting in poorer separation.
 - Use a buffer with an ionic strength of 0.15 M or greater to avoid any unwanted ionic interactions between the solute molecule and the matrix.
 - Only use freshly filtered (0.22 µm) buffer to avoid introducing particulate contamination.
 - qEV columns come equilibrated in filtered PBS containing < 0.1% w/v sodium azide.

4.2 Column Setup and Equilibration

1. Equilibrate the column and the sample buffer to be within the operational temperature range of 18-24 °C.

Do not remove the column caps until the column has reached operational temperature.

Sample buffers should be degassed and room temperature to avoid air bubbles forming in the gel bed. Rapid changes in temperature, for example removing packed columns from a cold room and applying buffer at room temperature, can introduce air bubbles in the packed bed, resulting in poorer separation.

- 2. Carefully remove the top cap only and attach the column in an upright position to stand ready for use. Automatic Fraction Collectors (AFC) are available from store.izon.com.
- 3. Remove the bottom cap and allow the buffer to start running through the column.
- 4. Attach the buffer reservoir to the top of the column.
- 5. Flush the column with at least one column volume of sample buffer. If an elution buffer other an PBS is to be used, equilibrate the column with at least three column volumes of the new buffer.

Only use freshly filtered (0.22 µm) buffer to avoid introducing particulate contamination.

4.3 Sample Loading

- To avoid clogging of column filters, it is recommended to filter or centrifuge the biological sample to remove large particulate matter. See Section 4.1: Operational Recommendations for more information.
- Continue to allow buffer to run through the column. The column will stop flowing when all of the buffer has entered the loading frit.
- 3. Load the prepared centrifuged sample volume onto the loading frit.
- Immediately start collecting the buffer volume (this includes the sample volume).
- 5. Allow the sample to run into the column. The column will stop flowing when all of the sample has entered the loading frit.
- 6. Top up the column with buffer and continue to collect the buffer volume.
- To collect accurate volumes, only load the required volume to the top of the column, wait for the volume to run through and repeat.

Different samples may give slightly different elution profiles and purity, hence an initial measurement of EV concentration and protein contaminants in collected fractions is recommended.

To ensure accurate EV separation and elution avoid stopping the column flow during the run.

4.4 Column Flush and Storage

- After all the desired fractions have been collected follow the cleaning protocol outlined subsequently, before loading another sample.
- 2. If storing the column for future use, perform the cleaning procedure with buffer containing a bacteriostatic agent (e.g. 0.05 % w/v sodium azide).
- 3. Store the column at +4 to +8 °C.

5 / RESOURCES

5.1 Column Cleaning and Sanitisation

To sanitise and remove precipitated proteins, non-specifically bound proteins and lipoproteins Izon recommends washing the column with 13.5 mL 0.5 M NaOH directly after using buffer for fraction collection, then flush with 27 mL of buffer to return the column pH to normal. Simply flushing with a large volume of buffer after fraction collection is not sufficient to clean the column completely and there may be some carry-over from previous samples.

5.2 Protocols for EV Isolation from Common Sources

See Izon Support Centre support.izon.com for application notes and typical protocols for common EV samples. If you are unsure of what to do to prepare your sample, please contact support@izon.com for assistance.

5.3 EV Analysis Using TRPS

Izon recommends TRPS analysis for determination of particle size, concentration, and zeta potential. The TRPS Reagent Kit includes coating solutions for pre-coating the pore, minimising non-specific binding and provides for stable and accurate sizing and concentration analysis.

For TRPS analysis of the EVs, Izon recommends an initial dilution of 1/5 or 1/10 in electrolyte. Optimise the dilution to achieve a rate at the highest operating pressure of approximately 200 to 2000 particles per minute to avoid pore blockage.

See Izon Support Centre support.izon.com for more information on the analysis of EVs with TRPS.

www.izon.com Rev A

